Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Med Virol ; 2022 Aug 28.
Article in English | MEDLINE | ID: covidwho-2229042

ABSTRACT

The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.

2.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: covidwho-2155134

ABSTRACT

The tremendous majority of SARS-CoV-2 genomic data so far neglected intra-host genetic diversity. Here, we studied SARS-CoV-2 quasispecies based on data generated by next-generation sequencing (NGS) of complete genomes. SARS-CoV-2 raw NGS data had been generated for nasopharyngeal samples collected between March 2020 and February 2021 by the Illumina technology on a MiSeq instrument, without prior PCR amplification. To analyze viral quasispecies, we designed and implemented an in-house Excel file ("QuasiS") that can characterize intra-sample nucleotide diversity along the genomes using data of the mapping of NGS reads. We compared intra-sample genetic diversity and global genetic diversity available from Nextstrain. Hierarchical clustering of all samples based on the intra-sample genetic diversity was performed and visualized with the Morpheus web application. NGS mapping data from 110 SARS-CoV-2-positive respiratory samples characterized by a mean depth of 169 NGS reads/nucleotide position and for which consensus genomes that had been obtained were classified into 15 viral lineages were analyzed. Mean intra-sample nucleotide diversity was 0.21 ± 0.65%, and 5357 positions (17.9%) exhibited significant (>4%) diversity, in ≥2 genomes for 1730 (5.8%) of them. ORF10, spike, and N genes had the highest number of positions exhibiting diversity (0.56%, 0.34%, and 0.24%, respectively). Nine hot spots of intra-sample diversity were identified in the SARS-CoV-2 NSP6, NSP12, ORF8, and N genes. Hierarchical clustering delineated a set of six genomes of different lineages characterized by 920 positions exhibiting intra-sample diversity. In addition, 118 nucleotide positions (0.4%) exhibited diversity at both intra- and inter-patient levels. Overall, the present study illustrates that the SARS-CoV-2 consensus genome sequences are only an incomplete and imperfect representation of the entire viral population infecting a patient, and that quasispecies analysis may allow deciphering more accurately the viral evolutionary pathways.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Quasispecies , COVID-19/epidemiology , COVID-19/genetics , Pandemics , Consensus , Genome, Viral , High-Throughput Nucleotide Sequencing , Nucleotides
3.
J Med Virol ; 94(7): 3421-3430, 2022 07.
Article in English | MEDLINE | ID: covidwho-2114172

ABSTRACT

The SARS-CoV-2 21K/BA.1, 21L/BA.2, and BA.3 Omicron variants have recently emerged worldwide. To date, the 21L/BA.2 Omicron variant has remained very minority globally but became predominant in Denmark instead of the 21K/BA.1 variant. Here, we describe the first cases diagnosed with this variant in south-eastern France. We identified 13 cases using variant-specific qPCR and next-generation sequencing between 28/11/2021 and 31/01/2022, the first two cases being diagnosed in travelers returning from Tanzania. Overall, viral genomes displayed a mean (±standard deviation) number of 65.9 ± 2.5 (range, 61-69) nucleotide substitutions and 31.0 ± 8.3 (27-50) nucleotide deletions, resulting in 49.6 ± 2.2 (45-52) amino acid substitutions (including 28 in the spike protein) and 12.4 ± 1.1 (12-15) amino acid deletions. Phylogeny showed the distribution in three different clusters of these genomes, which were most closely related to genomes from England and South Africa, from Singapore and Nepal, or from France and Denmark. Structural predictions highlighted a significant enlargement and flattening of the surface of the 21L/BA.2 N-terminal domain of the spike protein compared to that of the 21K/BA.1 Omicron variant, which may facilitate initial viral interactions with lipid rafts. Close surveillance is needed at global, country, and center scales to monitor the incidence and clinical outcome of the 21L/BA.2 Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Mutation , Nucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Sci Rep ; 12(1): 18721, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2106463

ABSTRACT

At the time of a new and unprecedented viral pandemic, many questions are being asked about the genomic evolution of SARS-CoV-2 and the emergence of different variants, leading to therapeutic and immune evasion and survival of this genetically highly labile RNA virus. The nasopharyngeal persistence of infectious virus beyond 17 days proves its constant interaction with the human immune system and increases the intra-individual mutational possibilities. We performed a prospective high-throughput sequencing study (ARTIC Nanopore) of SARS-CoV-2 from so-called "persistent" patients, comparing them with a non-persistent population, and analyzing the quasi-species present in a single sample at time t. Global intra-individual variability in persistent patients was found to be higher than in controls (mean 5.3%, Standard deviation 0.9 versus 4.6% SD 0.3, respectively, p < 0.001). In the detailed analysis, we found a greater difference between persistent and non-persistent patients with non-severe COVID 19, and between the two groups infected with clade 20A. Furthermore, we found minority N501Y and P681H mutation clouds in all patients, with no significant differences found both groups. The question of the SARS-CoV-2 viral variants' genesis remains to be further investigated, with the need to prevent new viral propagations and their consequences, and quasi-species analysis could be an important key to watch out.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Quasispecies , Prospective Studies
5.
Microorganisms ; 10(10)2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2066267

ABSTRACT

The Omicron BA.5/22B variant has been designated as a "variant of concern" by the World Health Organization. We describe, here, the first evidence in Monaco of infection with an Omicron BA.5/22B variant, probably imported from the Republic of Seychelles, harboring a rare combination of non-BA.5/22B signature amino acid changes. SARS-CoV-2 neutralizing antibodies were measured with a surrogate virus neutralization test. SARS-CoV-2 genotype screening was performed on nasopharyngeal samples with a multiplex qPCR assay. The SARS-CoV-2 genome was obtained by next-generation sequencing with the Illumina COVID-seq protocol, then assembly using bioinformatics pipelines and software was performed. The BA.5/22B spike protein structure was obtained by molecular modeling. Two spouses were SARS-CoV-2-diagnosed the day they returned from a one-week trip in the Republic of Seychelles. SARS-CoV-2 qPCR screening for variant-specific mutations identified an Omicron variant BA.1/21K, BA.4/22A, or BA.5/22B. A SARS-Co-2 BA.5/22B variant genome was recovered from one of the spouses. Aside from BA.5/22B-defining amino acid substitutions, four other amino acid changes were encoded including Q556K in ORF1a, K2557R in ORF1b, and A67V and A829T in spike; only 13 genomes in sequence databases harbored these four mutations concurrently. Structural analysis of this BA.5/22B variant predicted that A829T in spike may result in a compaction that may affect conformational plasticity. Overall, our findings warrant performing genome-based genotypic surveillance to survey accurately the emergence and circulation of SARS-CoV-2 variants worldwide and point out that their first occurrence in a country is often through international travel despite implemented countermeasures.

6.
Infect Genet Evol ; 105: 105360, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2007950

ABSTRACT

Among the multiple SARS-CoV-2 variants identified since summer 2020, several have co-circulated, creating opportunities for coinfections and potentially genetic recombinations that are common in coronaviruses. Viral recombinants are indeed beginning to be reported more frequently. Here, we describe a new SARS-CoV-2 recombinant genome that is mostly that of a Omicron 21L/BA.2 variant but with a 3' tip originating from a Omicron 21K/BA.1 variant. Two such genomes were obtained in our institute from adults sampled in February 2022 in university hospitals of Marseille, southern France, by next-generation sequencing carried out with the Illumina or Nanopore technologies. The recombination site was located between nucleotides 26,858-27,382. In the two genomic assemblies, mean sequencing depth at mutation-harboring positions was 271 and 1362 reads and mean prevalence of the majoritary nucleotide was 99.3 ± 2.2% and 98.8 ± 1.6%, respectively. Phylogeny generated trees with slightly different topologies according to whether genomes analyzed were depleted or not of the 3' tip. This 3' terminal end brought in the Omicron 21L/BA.2 genome a short transposable element of 41 nucleotides named S2m that is present in most SARS-CoV-2 except a few variants among which the Omicron 21L/BA.2 variant and may be involved in virulence. Importantly, this recombinant is not detected by currently used qPCR that screen for variants in routine diagnosis. The present observation emphasizes the need to survey closely the genetic pathways of SARS-CoV-2 variability by whole genome sequencing, and it could contribute to gain a better understanding of factors that lead to observed differences between epidemic potentials of the different variants.

7.
Front Microbiol ; 12: 786233, 2021.
Article in English | MEDLINE | ID: covidwho-1903053

ABSTRACT

After the end of the first epidemic episode of SARS-CoV-2 infections, as cases began to rise again during the summer of 2020, we at IHU Méditerranée Infection in Marseille, France, intensified the genomic surveillance of SARS-CoV-2, and described the first viral variants. In this study, we compared the incidence curves of SARS-CoV-2-associated deaths in different countries and reported the classification of SARS-CoV-2 variants detected in our institute, as well as the kinetics and sources of the infections. We used mortality collected from a COVID-19 data repository for 221 countries. Viral variants were defined based on ≥5 hallmark mutations along the whole genome shared by ≥30 genomes. SARS-CoV-2 genotype was determined for 24,181 patients using next-generation genome and gene sequencing (in 47 and 11% of cases, respectively) or variant-specific qPCR (in 42% of cases). Sixteen variants were identified by analyzing viral genomes from 9,788 SARS-CoV-2-diagnosed patients. Our data show that since the first SARS-CoV-2 epidemic episode in Marseille, importation through travel from abroad was documented for seven of the new variants. In addition, for the B.1.160 variant of Pangolin classification (a.k.a. Marseille-4), we suspect transmission from farm minks. In conclusion, we observed that the successive epidemic peaks of SARS-CoV-2 infections are not linked to rebounds of viral genotypes that are already present but to newly introduced variants. We thus suggest that border control is the best mean of combating this type of introduction, and that intensive control of mink farms is also necessary to prevent the emergence of new variants generated in this animal reservoir.

8.
J Med Virol ; 94(8): 3739-3749, 2022 08.
Article in English | MEDLINE | ID: covidwho-1802445

ABSTRACT

Multiple SARS-CoV-2 variants have successively, or concomitantly spread worldwide since the summer of 2020. A few co-infections with different variants were reported and genetic recombinations, common among coronaviruses, were reported or suspected based on co-detection of signature mutations of different variants in a given genome. Here we report three infections in southern France with a Delta 21J_AY.4-Omicron 21K/BA.1 "Deltamicron" recombinant. The hybrid genome harbors signature mutations of the two lineages, supported by a mean sequencing depth of 1163-1421 reads and a mean nucleotide diversity of 0.1%-0.6%. It is composed of the near full-length spike gene (from codons 156-179) of an Omicron 21K/BA.1 variant in a Delta 21J/AY.4 lineage backbone. Importantly, we cultured an isolate of this recombinant and sequenced its genome. It was observed by scanning electron microscopy. As it is misidentified with current variant screening quantitative polymerase chain reaction (qPCR), we designed and implemented for routine diagnosis a specific duplex qPCR. Finally, structural analysis of the recombinant spike suggested its hybrid content could optimize viral binding to the host cell membrane. These findings prompt further studies of the virological, epidemiological, and clinical features of this recombinant.


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/diagnosis , Humans , Phylogeny , SARS-CoV-2/genetics
9.
Emerg Microbes Infect ; 11(1): 894-901, 2022 12.
Article in English | MEDLINE | ID: covidwho-1735490

ABSTRACT

SARS-CoV-2 reinfection rate is low. The relative severity of the first and second episodes of infection remains poorly studied. In this study, we aimed at assessing the frequency of SARS-CoV-2 reinfections and comparing the severity of the first and second episodes of infection. We retrospectively included patients with SARS-CoV-2 positive RT-PCR at least 90 days after clinical recovery from a COVID-19 episode and with at least one negative RT-PCR after the first infection. Whole genome sequencing and variant-specific RT-PCR were performed and clinical symptoms and severity of infection were retrospectively documented from medical files. A total of 209 COVID-19 reinfected patients were identified, accounting for 0.4% of positive cases diagnosed from 19 March 2020 to 24 August 2021. Serology was performed in 64 patients, of whom 39 (60.1%) had antibodies against SARS-CoV-2 when sampled at the early stage of their second infection. Only seven patients (3.4%) were infected twice with the same variant. We observed no differences in clinical presentation, hospitalization rate, and transfer to ICU when comparing the two episodes of infections. Our results suggest that the severity of the second episode of COVID-19 is in the same range as that of the first infection, including patients with antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reinfection , Retrospective Studies , SARS-CoV-2/genetics , Whole Genome Sequencing
10.
Arch Virol ; 167(4): 1185-1190, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1694545

ABSTRACT

SARS-CoV-2 variants have become a major virological, epidemiological, and clinical concern, particularly with regard to the risk of escape from vaccine-induced immunity. Here, we describe the emergence of a new variant, with the index case returning from travel in Cameroon. For 13 SARS-CoV-2-positive patients living in the same geographical area of southeastern France, a qPCR test for screening variant-associated mutations showed an atypical combination. The genome sequences were obtained by next-generation sequencing with Oxford Nanopore Technologies on GridION instruments within about 8 h. Analysis revealed 46 nucleotide substitutions and 37 deletions, resulting in 30 amino acid substitutions and 12 deletions. Fourteen of the amino acid substitutions, including N501Y and E484K, and nine deletions are located in the spike protein. This genotype pattern led to the establishment of a new Pangolin lineage, named B.1.640.2, that is a phylogenetic sister group to the old B.1.640 lineage, which has now been renamed B.1.640.1. The lineages differ by 25 nucleotide substitutions and 33 deletions. The combination of mutations in these isolates and their phylogenetic position indicate, based on our previous definition, that they represent a new variant, which we have named "IHU". These data are a further example of the unpredictability of the emergence of SARS-CoV-2 variants, and of their possible introduction into a given geographical area from abroad.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Travel Med Infect Dis ; 46: 102277, 2022.
Article in English | MEDLINE | ID: covidwho-1677190

ABSTRACT

BACKGROUND: We describe the epidemiology of the first cases diagnosed in our institute of infections with the SARS-CoV-2 Beta variant and how this variant was imported to Marseille. METHODS: The Beta variant was identified based on analyses of sequences of viral genomes or of a spike gene fragment obtained by next-generation sequencing using Illumina technology, or by a real-time reverse-transcription-PCR (qPCR) specific of the Beta variant. RESULTS: The first patient diagnosed as infected with the SARS-CoV-2 Beta variant was sampled on January 15, 2021. Twenty-nine patients were diagnosed in January 2021 (two weeks). Fifteen (52%) patients were of Comorian nationality. Eight (28%) had travelled abroad, including six who had returned from Comoros. Phylogeny based on SARS-CoV-2 genomes from 11 of these patients and their best BLAST hits from the GISAID database showed that seven patients, including the four returning from Comoros, were clustered with 27 other genomes from GISAID that included the six first Beta variant genomes described in Comoros in January 2021. CONCLUSIONS: Our analyses highlight that, as for the case of other SARS-CoV-2 variants that have been diagnosed in Marseille, the Beta variant was imported to Marseille through travel from abroad. It had limited spread in our geographical area.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Comoros/epidemiology , Genome, Viral , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics
12.
Arch Virol ; 167(2): 583-589, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653517

ABSTRACT

We detected SARS-CoV-2 of PANGO lineage R.1 with the spike substitution E484K in three patients. Eleven other sequences in France and 8,831 worldwide were available from GISAID, 92% originating from Japan. The three genome sequences from our institute were phylogenetically closest to another from Guinea-Conakry, where one of the patients had travelled. These viruses did not exhibit any unusual features in cell culture. Spike structural predictions indicated a 1.3-time higher transmissibility index than for the globally spread B.1.1.7 variant but also an affinity loss for gangliosides that might have slowed dissemination. The spread of new SARS-CoV-2 mutants/variants is still not well understood and therefore difficult to predict, and this hinders implementation of effective preventive measures, including adapted vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Guinea , Humans , Mutation , Spike Glycoprotein, Coronavirus/genetics
13.
Front Biosci (Landmark Ed) ; 26(12): 1493-1502, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1614662

ABSTRACT

BACKGROUND: Despite the fact that the clinical efficacy of hydroxychloroquine is still controversial, it has been demonstrated in vitro to control SARS-CoV-2 multiplication on Vero E6 cells. In this study, we tested the possibility that some patients with prolonged virus excretion could be infected by less susceptible strains. METHOD: Using a high-content screening method, we screened 30 different selected isolates of SARS-CoV-2 from different patients who received azithromycin ± hydroxychloroquine. We focused on patients with viral persistence, i.e., positive virus detection in a nasopharyngeal sample ≥10 days, and who were tested during two French epidemic waves, late winter-spring of 2020 and the summer of 2020. Dose-response curves in single-molecule assays with hydroxychloroquine were created for isolates with suspected reduced susceptibility. Genome clustering was performed for all isolates. RESULTS: Of 30 tested strains, three were detected as replicating in the presence of azithromycin + hydroxychloroquine, each at 5 µM. The dose-response model showed a decrease in susceptibility of these three strains to hydroxychloroquine. Whole genome sequencing revealed that these three strains are all from the second epidemic wave and two cluster with isolates from Africa. CONCLUSIONS: Reduced susceptibility to hydroxychloroquine was not associated with viral persistence in naso-pharyngeal samples. Rather, it was associated with occurring during the second epidemic wave, which began in the summer and with strains clustering with those with a common genotype in Africa, where hydroxychloroquine was the most widely used.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine , Azithromycin/pharmacology , Humans , Hydroxychloroquine/pharmacology , SARS-CoV-2
14.
Virus Genes ; 58(1): 53-58, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1536341

ABSTRACT

Great concerns have been raised about SARS-CoV-2 variants over the past six months. At the end of 2020, an increasing incidence of spike substitutions Q677H/P was described in the USA, which involved six independent lineages. We searched for changes to this amino acid in the sequence database of SARS-CoV-2 genomes obtained at the IHU Méditerranée Infection (Marseille, France) from 3634 patients sampled between February 2020 and April 2021. In seven genomes (0.2%), we found a deletion of five amino acids at spike positions 675-679 (QTQTN) including Q677, and in 76 genomes (2.3%) we found a Q677H substitution. The 83 genomes were classified in ten different Pangolin lineages. Genomes with a spike Q677 deletion were obtained from respiratory samples collected in six cases between 28 March 2020 and 12 October 2020 and in one case on 1 February 2021. The Q677H substitution was found in genomes all obtained from respiratory samples collected from 19 January 2021 and were classified in seven different lineages. Most of these genomes (41 cases) were of UK variant. Two others were classified in the B.1.160 Pangolin lineage (Marseille-4 variant) which was first detected in July 2020 in our institute but was devoid of this substitution until 19 January 2021. Also, eight genomes were classified in the A.27/Marseille-501 lineage which was first detected in our institute in January 2021 and which either harboured or did not harbour the Q677H substitution. Thus, the spike Q677H substitution should be considered as another example of convergent evolution, as it is the case of spike substitutions L18F, E484K, L452R, and N501Y which also independently appeared in various lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Substitution , Amino Acids , COVID-19/virology , France , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
15.
Front Microbiol ; 12: 675528, 2021.
Article in English | MEDLINE | ID: covidwho-1456295

ABSTRACT

The rapid spread of SARS-CoV-2 variants has quickly spanned doubts and the fear about their ability escape vaccine protection. Some of these variants initially identified in caged were also found in humans. The claim that these variants exhibited lower susceptibility to antibody neutralization led to the slaughter of 17 million minks in Denmark. SARS-CoV-2 prevalence tests led to the discovery of infected farmed minks worldwide. In this study, we revisit the issue of the circulation of SARS-CoV-2 variants in minks as a model of sarbecovirus interspecies evolution by: (1) comparing human and mink angiotensin I converting enzyme 2 (ACE2) and neuropilin 1 (NRP-1) receptors; (2) comparing SARS-CoV-2 sequences from humans and minks; (3) analyzing the impact of mutations on the 3D structure of the spike protein; and (4) predicting linear epitope targets for immune response. Mink-selected SARS-CoV-2 variants carrying the Y453F/D614G mutations display an increased affinity for human ACE2 and can escape neutralization by one monoclonal antibody. However, they are unlikely to lose most of the major epitopes predicted to be targets for neutralizing antibodies. We discuss the consequences of these results for the rational use of SARS-CoV-2 vaccines.

16.
Infect Genet Evol ; 95: 105092, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433676

ABSTRACT

OBJECTIVES: To compare the demographics, clinical characteristics and severity of patients infected with nine different SARS-CoV-2 variants, during three phases of the COVID-19 epidemic in Marseille. METHODS: A single centre retrospective cohort study was conducted in 1760 patients infected with SARS-CoV-2 of Nextstrain clades 20A, 20B, and 20C (first phase, February-May 2020), Pangolin lineages B.1.177 (we named Marseille-2) and B.1.160 (Marseille-4) variants (second phase, June-December 2020), and B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and A.27 (Marseille-501) variants (third phase, January 2021-today). Outcomes were the occurrence of clinical failures, including hospitalisation, transfer to the intensive-care unit, and death. RESULTS: During each phase, no major differences were observed with regards to age and gender distribution, the prevalence of chronic diseases, and clinical symptoms between variants circulating in a given phase. The B.1.177 and B.1.160 variants were associated with more severe outcomes. Infections occurring during the second phase were associated with a higher rate of death as compared to infections during the first and third phases. Patients in the second phase were more likely to be hospitalised than those in the third phase. Patients infected during the third phase were more frequently obese than others. CONCLUSION: A large cohort study is recommended to evaluate the transmissibility and to better characterise the clinical severity of emerging variants.


Subject(s)
COVID-19/pathology , Diabetes Mellitus/pathology , Genome, Viral , Hypertension/pathology , Obesity/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/mortality , Diabetes Mellitus/virology , Female , France/epidemiology , Genotype , Heart Diseases/epidemiology , Heart Diseases/mortality , Heart Diseases/pathology , Heart Diseases/virology , Hospitalization/statistics & numerical data , Hospitals , Humans , Hypertension/epidemiology , Hypertension/mortality , Hypertension/virology , Intensive Care Units , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/mortality , Neoplasms/pathology , Neoplasms/virology , Obesity/epidemiology , Obesity/mortality , Obesity/virology , Phylogeny , Retrospective Studies , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Severity of Illness Index , Survival Analysis
17.
Front Med (Lausanne) ; 8: 737602, 2021.
Article in English | MEDLINE | ID: covidwho-1430710

ABSTRACT

Since the start of COVID-19 pandemic the Republic of Djibouti, in the horn of Africa, has experienced two epidemic waves of the virus between April and August 2020 and between February and May 2021. By May 2021, COVID-19 had affected 1.18% of the Djiboutian population and caused 152 deaths. Djibouti hosts several foreign military bases which makes it a potential hot-spot for the introduction of different SARS-CoV-2 strains. We genotyped fifty three viruses that have spread during the two epidemic waves. Next, using spike sequencing of twenty-eight strains and whole genome sequencing of thirteen strains, we found that Nexstrain clades 20A and 20B with a typically European D614G substitution in the spike and a frequent P2633L substitution in nsp16 were the dominant viruses during the first epidemic wave, while the clade 20H South African variants spread during the second wave characterized by an increase in the number of severe forms of COVID-19.

18.
J Clin Med ; 10(12)2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1273476

ABSTRACT

(1) Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) excretion in stools is well documented by RT-PCR, but evidences that stools contain infectious particles are scarce. (2) Methods: After observing a Corona Virus 2019 Disease (COVID-19) epidemic cluster associated with a ruptured sewage pipe, we search for such a viable SARS-CoV-2 particle in stool by inoculating 106 samples from 46 patients. (3) Results: We successfully obtained two isolates from a unique patient with kidney transplantation under immunosuppressive therapy who was admitted for severe diarrhea. (4) Conclusions: This report emphasizes that SARS-CoV-2 is an enteric virus, and infectious virus particles can be isolated from the stool of immune-compromised patients like, in our case, kidney transplant recipient. Immune-compromised patients are likely to have massive multiplication of the virus in the gastrointestinal tract and this report suggests possible fecal transmission of SARS-CoV-2.

19.
Clin Microbiol Infect ; 27(10): 1516.e1-1516.e6, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1240263

ABSTRACT

OBJECTIVES: To compare the clinical and epidemiological aspects associated with different predominant lineages circulating in Marseille from March 2020 to January 2021. METHODS: In this single-centre retrospective cohort study, characteristics of patients infected with four different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants were documented from medical files. The outcome was the occurrence of clinical failure, defined as hospitalization (for outpatients), transfer to the intensive care unit (inpatients) and death (all). RESULTS: A total of 254 patients were infected with clade 20A (20AS), 85 with Marseille-1 (M1V), 190 with Marseille-4 (M4V) and 211 with N501Y (N501YV) variants. 20AS presented a bell-shaped epidemiological curve and nearly disappeared around May 2020. M1V reached a very weak peak, then disappeared after six weeks. M4V appeared in July presented an atypical wave form for 7 months. N501YV has only recently appeared. Compared with 20AS, patients infected with M1V were less likely to report dyspnoea (adjusted odds ratio (OR) 0.50, p 0.04), rhinitis (aOR 0.57, p 0.04) and to be hospitalized (aOR 0.22, p 0.002). Patients infected with M4V were more likely to report fever than those with 20AS and M1V (aOR 2.49, p < 0.0001 and aOR 2.30, p 0.007, respectively) and to be hospitalized than those with M1V (aOR 4.81, p 0.003). Patients infected with N501YV reported lower rate of rhinitis (aOR 0.50, p 0.001) and anosmia (aOR 0.57, p 0.02), compared with those infected with 20AS. A lower rate of hospitalization was associated with N501YV infection compared with 20AS and M4V (aOR 0.33, p < 0.0001 and aOR 0.27, p < 0.0001, respectively). CONCLUSIONS: The four lineages have presentations that differ from one another, epidemiologically and clinically. This supports SARS-CoV-2 genomic surveillance through next-generation sequencing.


Subject(s)
COVID-19/epidemiology , COVID-19/pathology , SARS-CoV-2/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , Child , Child, Preschool , Female , France/epidemiology , Genotype , Hospitalization , Humans , Infant , Infant, Newborn , Intensive Care Units , Male , Middle Aged , Odds Ratio , Retrospective Studies , SARS-CoV-2/classification , SARS-CoV-2/genetics , Severity of Illness Index , Young Adult
20.
Clin Microbiol Infect ; 27(9): 1352.e1-1352.e5, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1225181

ABSTRACT

OBJECTIVES: Surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic epidemiology led us to detect several variants since summer 2020. We report the recent spread of a new SARS-CoV-2 spike 501Y variant. METHODS: SARS-CoV-2 sequences obtained from human nasopharyngeal samples by Illumina next-generation sequencing were analysed using Nextclade and an in-house Python script and were compared using BLASTn to the GISAID database. Phylogeny was investigated using the IQ-TREE software. RESULTS: We identified that SARS-CoV-2 genomes from four patients diagnosed in our institute harboured a new set of amino acid substitutions including L18F, L452R, N501Y, A653V, H655Y, D796Y, G1219V ± Q677H. These spike N501Y genomes are the first of Nextstrain clade 19B. We obtained partial spike gene sequences of this genotype for an additional 43 patients. All patients infected with this genotype were diagnosed since mid-January 2021. We detected 42 other genomes of this genotype in GISAID, which were obtained from samples collected in December 2020 in four individuals and in 2021 in 38 individuals. The 89 sequences obtained in our institute or other laboratories originated from the Comoros archipelago, western European countries (mostly metropolitan France), Turkey and Nigeria. CONCLUSION: These findings warrant further studies to investigate the spread, epidemiological and clinical features, and sensitivity to immune responses of this variant.


Subject(s)
Amino Acid Substitution , COVID-19/diagnosis , SARS-CoV-2/classification , Sequence Analysis, RNA/methods , Spike Glycoprotein, Coronavirus/genetics , France , High-Throughput Nucleotide Sequencing , Humans , Models, Molecular , Nasopharynx/virology , Nigeria , Phylogeny , Protein Conformation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL